#version 330 #define mdot(x, y) (max(dot(x, y), 0.f)) in vec3 worldPos, normal; in vec2 texCoords; uniform vec3 camPos; uniform sampler2D albedoMap; uniform sampler2D normalMap; uniform sampler2D metallicMap; uniform sampler2D roughnessMap; uniform sampler2D aoMap; uniform samplerCube irradianceMap; out vec4 fragColor; uniform vec3 lightPositions[4]; uniform vec3 lightColors[4]; const float PI = 3.14159265359; vec3 fresnelSchlick(float cosTheta, vec3 F0) { return F0 + (1.f - F0) * pow(1.f - cosTheta, 5.f); } vec3 fresnelSchlickRoughness(float cosTheta, vec3 F0, float roughness) { return F0 + (max(vec3(1.f - roughness), F0) - F0) * pow(1.f - cosTheta, 5.f); } float distributionGGX(vec3 N, vec3 H, float roughness) { float a = roughness * roughness; float NdotH = mdot(N, H); float denom = (NdotH * NdotH) * ((a * a) - 1.f) + 1.f; denom = PI * denom * denom; return (a * a) / denom; } float geometrySchlickGGX(float NdotV, float roughness) { float r = roughness + 1.f; float k = (r * r) / 8.f; return NdotV / (NdotV * (1.f - k) + k); } float geometrySmith(vec3 N, vec3 V, vec3 L, float roughness) { float ggx1 = geometrySchlickGGX(mdot(N, L), roughness); float ggx2 = geometrySchlickGGX(mdot(N, V), roughness); return ggx1 * ggx2; } vec3 getNormalFromMap() { vec3 tangentNormal = texture(normalMap, texCoords).xyz * 2.f - 1.f; vec3 Q1 = dFdx(worldPos); vec3 Q2 = dFdy(worldPos); vec2 st1 = dFdx(texCoords); vec2 st2 = dFdy(texCoords); vec3 N = normalize(normal); vec3 T = normalize(Q1 * st2.t - Q2 * st1.t); vec3 B = -normalize(cross(N, T)); mat3 TBN = mat3(T, B, N); return normalize(TBN * tangentNormal); } void main() { vec3 albedo = pow(texture(albedoMap, texCoords).rgb, vec3(2.2)); vec3 normal = getNormalFromMap(); float metallic = texture(metallicMap, texCoords).r; float roughness = texture(roughnessMap, texCoords).r; float ao = texture(aoMap, texCoords).r; vec3 N = normalize(normal); vec3 V = normalize(camPos - worldPos); vec3 F0 = mix(vec3(0.04), albedo, metallic); // reflectance vec3 Lo = vec3(0.f); for (int i = 0; i < lightPositions.length(); i++) { vec3 L = normalize(lightPositions[i] - worldPos); vec3 H = normalize(V + L); // calculate radiance float dist = length(lightPositions[i] - worldPos); float attenuation = 5.f / (dist * dist); vec3 radiance = lightColors[i] * attenuation; // cook-torrance brdf vec3 F = fresnelSchlick(mdot(H, V), F0); float NDF = distributionGGX(N, H, roughness); float G = geometrySmith(N, V, L, roughness); float denom = 4.f * mdot(N, V) * mdot(N, L); vec3 specular = (NDF * G * F) / max(denom, 0.0000001); vec3 kS = F; // fresnel = reflection ratio vec3 kD = vec3(1.f) - kS; kD *= 1.f - metallic; Lo += (kD * albedo / PI + specular) * radiance * mdot(N, L); } vec3 kD = 1.f - fresnelSchlickRoughness(mdot(N, V), F0, roughness); vec3 diffuse = texture(irradianceMap, N).rgb * albedo; vec3 ambient = (kD * diffuse) * ao; vec3 color = ambient + Lo; color = color / (color + vec3(1.f)); // map to HDR color = pow(color, vec3(1.f / 2.2)); // gamma correction fragColor = vec4(color, 1.f); }